SYNTHESES OF ENANTIOMERS OF 2-[6-(4-CHLOROPHENOXY)HEXYL]-OXIRANE-2-CARBOXYLIC ACID

Martine M.L. Crilley,^a Andrew J.F. Edmunds,^b Klaus Eistetter,^{b*} and Bernard T. Golding,^{a*}

- a Department of Chemistry, Bedson Building, The University, Newcastle upon Tyne, NEI 7RU, United Kingdom.
- b Byk Gulden Pharmazeutika, D-7750 Konstanz, Byk Gulden Strasse 2, Federal Republic of Germany.

Summary: The title compounds were prepared by an efficient route featuring novel reductions of an acid chloride and the Sharpless epoxidation of an allylic alcohol.

The coenzyme A (CoA) esters of substituted oxirane-2-carboxylic acids such as 2-tetradecyloxirane-2-carboxylic acid (tetradecylglycidate) have been found to be powerfully hypoglycaemic in animals of several species, ' including man.² This is associated with the inhibition of carnitine palmitoyltransferase A (CPT1), which is required for the oxidation of long-chain acyl CoA esters. (*Rac.*)-2-[6-(4-chlorophenoxy)hexyl]-oxirane-2-carboxylic acid [(1), generic name Etomoxir for the corresponding ethyl ester], as its CoA ester, acts as a strong inhibitor of mitochondrial CPT1 and is a candidate anti-diabetic drug.³ This activity is likely to be associated with one enantiomer due to an enantioselective active-site directed irreversible inhibition of the enzyme by covalent bond formation.⁴ To investigate this hypothesis, a synthetic method for obtaining (1a) (*R*-isomer) and (1b) (*S*-isomer) enantiospecifically was devised (Scheme 1).

The routes to the enantiomers (1a) and (1b) and their esters involve Sharpless epoxidations⁵ of the allylic alcohol (2), which was obtained from the α,β -unsaturated ester (3).⁶ Efficient reductions of α,β -unsaturated esters to allylic alcohols are not well reported. Carbonyl compounds have been reduced by sodium borohydride absorbed onto alumina⁷ or silica.⁸ We have found that NaBH₄ on silica is suitable for the chemoselective reduction of the acid chloride (4)⁹ [prepared by base hydrolysis of ester (3) to give acid (5),¹⁰ that was treated with thionyl chloride] to allylic alcohol (2).¹¹ Alternatively, reduction of ester (3) with aluminium trihydride in diethyl ether¹² gave allylic alcohol (2) directly in high yield and with complete chemoselectivity. The alcohol (2) was treated with *t*-butylhydroperoxide, titanium isopropoxide and diethyl L-(+)-tartrate in a modified Sharpless epoxidation⁵ to give the enantiomerically pure (S)-(-)-epoxycarbinol (6a)¹³ (concerning the configuration of 6a see below). Oxidation

886

of the epoxycarbinol (6a) to oxiranecarboxylic acid (1a) was not trivial and a variety of reagents was tried before it was found that ruthenium(III)-catalysed oxidation $(\text{RuCl}_3-\text{NaIO}_4)^{1.4}$ gave a product mixture containing mainly (1a) but accompanied by acid (7) derived from oxidation of the oxirane methylene.¹⁵ Although the required acid (1a) could be obtained from the mixture by recrystallisation, isolated yields were low (15-20%) and it was more efficient to esterify the crude mixture of acids and separate the esters by column chromatography or distillation. Thus, diazomethane esterification gave the ester (8a)¹⁶ (purified by column chromatography). Esterification with diethyl sulphate gave ester (9)¹⁷, purified by distillation, which could be hydrolysed to crystalline (R)-(+)-oxiranecarboxylic acid (1a).¹⁸

The above sequence was repeated on the allylic alcohol (2) using diethyl D-(-)-tartrate, t-butylhydroperoxide and $Ti(O^{i}Pr)_{4}$ to give the (R)-(+)-epoxycarbinol (6b) (49%), which was treated with $RuCl_{3}-NaIO_{4}^{14}$ to give the (S)-(+)-oxiranecarboxylic acid (1b) (80%). Esterification of (1b) with diazomethane and column chromatography gave the ester (8b) (69%).¹⁹

The predicted enantioface selectivity of the Sharpless epoxidation of (2) employing diethyl L-(+)-tartrate as chiral auxiliary should lead to (6a), *i.e.* (S)- configuration.²⁰ It follows that the configuration of (8a) and (1a) should be (R) which is in accord with the known²¹ configuration of the similar anti-diabetic drug (R)-(+)-2-tetradecyloxirane-carboxylate (palmoxirate). N.m.r. experiments with a chiral shift reagent have been carried out on the (R)-epoxycarbinol (6a) and (rac.)-epoxycarbinol [prepared by m-chloroperbenzoic acid epoxidation of the allylic alcohol (2), 67%]. An epoxy hydrogen resonance from the racemic was split addition epoxycarbinol into two signals by the of europium(III) tris-3-(heptafluoropropylhydroxymethylene)-camphorate; the corresponding epoxy hydrogen signal of (6a) exhibited only one signal under similar conditions. A sample of racemic (1) gave diastereoisomeric salts with (-)-cinchonidine whose triplets for the C-6 protons could be resolved in the 'H n.m.r. The sample of (1a) showed only one triplet for the C-6 protons of its (-)-cinchonidine salt.

Preliminary experiments have shown that only the CoA ester of acid (1a) (i.e. R-enantiomer) inhibits CPT1 in rat liver mitochondria.²²

Since this work was carried out, a paper by Ho *et al*²¹ described the enantiospecific synthesis of methyl palmoxirate by a route that also employed the Sharpless epoxidation of an intermediate allylic alcohol.

References and notes

- 1. G.F. Tutwiler, R.J. Mohrbacher, and W. Ho, Diabetes, 1979, 28, 242.
- 2. J. Verhagen, J. Leempoels, J. Burgmans, and G.F. Tutwiler, Diabetes Suppl., 1984, 33, 688.
- 3. Drugs of the Future, 1986, 11, 1034.
- 4. T.C. Kiorpes, D. Hoerr, W. Ho, L.E. Weaner, M.G. Inman, and G.F. Tutwiler, J. Biol. Chem., 1984, 259, 9750.
- 5. R.M. Hanson and K.B. Sharpless, J. Org. Chem., 1986, 51, 1922.

- 6. European Patent Application 46590.
- 7. E. Santaniello, F. Ponti, and A. Manzocchi, Synthesis, 1978, 891.
- 8. V. Ciurdaru and F. Hodosan, Rev. Roum. Chim., 1977, 22, 1027.
- M.p. 47-48°C; δ_H 1.26-1.59 (6H, m, 3 x CH₂), 1.72-1.81 (2H, m, CH₂), 2.36 (2H, t, J 7 Hz, CH₂C=), 3.88 (2H, t, J 6 Hz, OCH₂), 5.78 (1H, s, C=CHH), 6.26 (1H, s, C=CHH), 6.80 (2H, d, J 9 Hz, H-2 and H-6) and 7.24 (2H, d, J 9 Hz, H-3 and H-5); v_{max} 1 759 and 1 595 cm⁻¹; m/z 300 (M⁺) and 128 (base peak, C₆H₄ClO) [Found: C, 60.1; H, 6.05. C₁₅H₁₈Cl₂O₂ requires C, 60.04; H, 6.05%].
- M.p. 74.5-75.5°C [Found: C, 63.72; H, 6.77; Cl, 12.54. C₁₅H₁₉ClO₃ requires C, 63.65; H, 6.72; Cl, 12.55%].
- ⁶H 1.18-1.49 (6H, m, 3 x CH₂), 1.76 (2H, m, CH₂), 1.95 (1H, br s, OH), 2.06 (2H, t, J 7 Hz, CH₂C=), 3.89 (2H, t, J 6.5 Hz, OCH₂), 4.05 (2H, s, CH₂OH), 4.86 (1H, s, C=CHH), 5.01 (1H, s, C=CHH), 6.79 (2H, d, J 9 Hz, H-2 and H-6) and 7.20 (2H, d, J 9 Hz, H-3 and H-5); m/z 269 (M⁺) and 128 (base peak, C₈H₄ClO).
- 12. cf. M.J. Jorgenson, Tetrahedron Letts., 1962, 559.
- 13. M.p. 44-45°C; δ_H 1.26-1.58 (7H, m, 3 x CH₂ and OH), 1.71-1.81 (4H, m, 2 x CH₂), 2.66 (1H, d, J 5 Hz, CHHO), 2.88 (1H, d, J 5 Hz, CHHO), 3.62 (1H, d, J 12 Hz, CHHOH), 3.77 (1H, d, J 12 Hz, CHHOH), 3.92 (2H, t, J 6.5 Hz, OCH₂), 6.80 (2H, d, J 8 Hz, H-2 and H-6) and 7.21 (2H, d, J 8 Hz, H-3 and H-5); m/z 284 (M⁺) and 128 (base peak, C₆H₄ClO₂); [α]_{D²⁴} -30.7° (1% in CHCl₃) [Found: C, 63.46; H, 7.29. C₁₅H₂₁ClO₃ requires C, 63.41; H, 7.45%).
- 14. P.H.J. Carlsen, T. Katsuki, V.S. Martin, and K.B. Sharpless, J. Org. Chem., 1981, 46, 3936.
- 15. A sample of (7) was independently synthesised for verification of its presence as a reaction product. It was found that addition of 18-crown-6 increases both the rate of reaction and the extent of oxidation at C-1. As there was competing oxidation between the primary alcoholic and epoxy methylene functions of (6), we envisaged that the epoxy aldehyde (10) would be oxidised at C-1 at a faster rate, resulting in an increased proportion of (1) to (7). A sample of (+)-(10), ([α]_D²³ + 21.9° (1% in CHCl₃)), was prepared by Swern oxidation (A.J. Mancuso, S.L. Huang, and D. Swern, J. Org. Chem., 1978, 43, 2480) of enantiomerically pure (-)-(6a). Ru(III)-catalysed oxidation of (+)-(10) gave a higher ratio of (1) to (7).
- 16. M.p. 32-33°C; δ_H 1.26-1.60 (6H, m, 3 x CH₂), 1.64-1.8 (2H, m, CH₂), 2.14 (2H, m, CH₂),
 2.79 (1H, d, J 5.8 Hz, CHHO), 3.03 (1H, d, J 5.8 Hz, CHHO), 3.76 (3H, s, OCH₃), 3.90 (2H, t, J 6.4 Hz, OCH₂), 6.80 (2H, d, J 9 Hz, H-2 and H-6) and 7.21 (2H, d, J 9 Hz, H-3 and H-5); m/z 312 (M⁺) and 128 (base peak, C₆H₄ClO); [α]_D + 7.06° (0.6% in MeOH) [Found: C, 61.15; H, 6.42. C₁₆H₂₁ClO₄ requires C, 61.44; H, 6.72%].
- 17. Oil; δ_{H} 1.2-2.2 (13H, m, 5 x CH₂ and CH₃), 2.90 (2H, q, CH₂O), 3.90 (2H, t, OCH₂CH₂), 4.22 (2H, m, CO₂CH₂CH₃), 6.80 (2H, d, H-2 and H-6) and 7.24 (2H, d, H-3 and H-5); $[\alpha]_{\text{D}}^{24}$ + 8.56° (1% in CHCl₃).
- 18. M.p. 53-61°C; δ_{H} 1.2-2.3 (10H, m, 5 x CH₂), 2.98 (2H, q, CH₂O), 3.91 (2H, t, OCH₂CH₂), 6.88 (2H, d, H-2 and H-6) and 7.22 (2H, d, H-3 and H-5); [α]D²⁴ + 11.0° (1% in CHCl₃).
- 19. M.p. $31-32^{\circ}C$; $[\alpha]_{D}$ -6.07° (0.6% in MeOH) for (8b).
- 20. A. Pfenniger, Synthesis, 1986, 89.
- W. Ho, O. Tarhan, T.C. Kiorpes, G.F. Tutwiler, and R.J. Mohrbacher, J. Med. Chem., 1987, 30, 1094.
- 22. H.S.A. Sherratt and H.P.O. Wolf, unpublished results.

SCHEME 1

i.	25% (w/v) NaOH	in MeOH	, r.t., 18h, 81%

- ii, SOC1, (50 mol. eq.), $0^{\circ}C \rightarrow r.t.$ (18h), 63%
- iii. NaBH₄-silica (10 mol. eq. of hydride), Et₂O, r.t., 18h, 60%
- LIAIH $_4$ /AICl₃, Et₂O, -78°C \rightarrow 0°C, 70-92% iv.
- Diethyl L-(+)-tartrate (0.77 mol eq.), Ti(OⁱPr)₄ (0.51 mol eq.), t-BuO₂H (1.5 mol. eq.), ٧.
- powdered 4A sieves, -20° C (3h \rightarrow r.t. (1h)), 49% RuCl₃ (2.2 mol. %), NaIO₄ (3 mol. eq.), CCl₄-CH₃CN-H₂O, r.t., 7h, 81% or RuCl₃ (5-10 mol %), NaIO₄ (3 mol. eq.), 18-crown-6 (5-20 mol %), CCl₄-CH₃CN-H₂O, 0°C \rightarrow r.t., 7h, vi. 66%
- vii.
- CH_2N_2 in Et_2O , 71% DMF, NaHCO₃, (EtO)₂SO₂, r.t., 100% viii.
- NaOH in THF, r.t., 71% ix.

NB in all the above $R^{\dagger} = Cl$ O(CH₂)₆

(Received in UK 30 December 1988)