SYNTHESES OF ENANTIOMERS OF 2-[6-(4-CHLOROPHENOXY)HEXYL]-OXIRANE-2-CARBOXYLIC **ACID**

Martine M.L. Crilley,^a Andrew J.F. Edmunds, ^b Klaus Eistetter, ^{b*} and Bernard T. Golding, a^*

Summary: The title compounds were prepared by an efficient route featuring novel reductions of an acid chloride and the Sharpless epoxidation of an allylic alcohol.

The coenzyme A (CoA) esters of substituted oxirane-2-carboxylic acids such as 2-tetradecyloxirane-2-carboxylic acid (tetradecylglycidate) have been found to be powerfully hypoglycaemic in animals of several species,¹ including man.² This is associated with the inhibition of carnitine palmitoyltransferase A (CPTl), which is required for the oxidation of long-chain acyl CoA esters. (Rac.)-2-[6-(4-chlorophenoxy)hexyl]-oxirane-2-carboxylic acid $[(1),$ generic name Etomoxir for the corresponding ethyl ester], as its CoA ester, acts as a strong inhibitor of mitochondrial CPTl and is a candidate anti-diabetic drug.3 This activity is likely to be associated with one enantiomer due to an enantioselective active-site directed irreversible inhibition of the enzyme by covalent bond formation.4 To investigate this hypothesis, a synthetic method for obtaining $(1a)$ $(R-isomer)$ and $(1b)$ $(S-isomer)$ enantiospecifically was devised (Scheme 1).

The routes to the enantiomers (la) and **(lb)** and their esters involve Sharpless epoxidationss of the allylic alcohol (2), which was obtained from the α, β -unsaturated ester (3).⁶ Efficient reductions of α, β -unsaturated esters to allylic alcohols are not well reported. Carbonyl compounds have been reduced by sodium borohydride absorbed onto alumina⁷ or silica.⁸ We have found that N aBH₄ on silica is suitable for the chemoselective reduction of the acid chloride (4) ⁹ [prepared by base hydrolysis of ester (3) to give acid (5) ,¹ that was treated with thionyl chloride] to allylic alcohol (2).¹¹ Alternatively, reduction of ester (3) with aluminium trihydride in diethyl ether¹² gave allylic alcohol (2) directly in high yield and with complete chemoselectivity. The alcohol (2) was treated with t -butylhydroperoxide, titanium isopropoxide and diethyl L- $(+)$ -tartrate in a modified Sharpless epoxidation⁵ to give the enantiomerically pure (S) -(-)-epoxycarbinol (6a)¹³ (concerning the configuration of 6a see below). Oxidation

a *Department of Chemistry, Bedson Building, The University, Newcustle upon Tyne, NEI 7RU, United Kingdom.*

b Byk Gulden Phurmazeutika, D-7750 Konstanz, Byk Gulden Strasse 2, Federal Republic of Germany.

886

of the epoxycarbinol **(6a)** to oxiranecarboxylic acid (la) was not trivial and a variety of reagents was tried before it was found that ruthenium(III)-catalysed oxidation $(RuCl₃-NaIO₄)$ ¹⁴ gave a product mixture containing mainly (la) but accompanied by acid (7) derived from oxidation of the oxirane methylene.¹⁵ Although the required acid $(1a)$ could be obtained from the mixture by recrystallisation, isolated yields were low $(15-20%)$ and it was more efficient to esterify the crude mixture of acids and separate the esters by column chromatography or distillation. Thus, diazomethane esterification gave the ester $(8a)$ ¹⁶ (purified by column chromatography). Esterification with diethyl sulphate gave ester **(9)' 7,** purified by distillation, which could be hydrolysed to crystalline $(R)-(+)$ -oxiranecarboxylic acid (1a).¹⁸

The above sequence was repeated on the allylic alcohol (2) using diethyl D- $(-)$ -tartrate, t-butylhydroperoxide and $Ti(O^{i}Pr)_{4}$ to give the $(R)-(+)$ -epoxycarbinol (6b) (49%), which was treated with $RuCl₃-NaIO₄¹⁴$ to give the $(S)-(+)$ -oxiranecarboxylic acid (1b) (80%). Esterification of (lb) with diazomethane and column chromatography gave the ester (8b) (69%) .¹⁹

The predicted enantioface selectivity of the Sharpless epoxidation of (2) employing diethyl $L-$ (+)-tartrate as chiral auxiliary should lead to **(6a),** *i.e.* (S)- configuration.²⁰ It follows that the configuration of $(8a)$ and $(1a)$ should be (R) which is in accord with the known²¹ configuration of the similar anti-diabetic drug $(R)-(+)$ -2-tetradecyloxirane-carboxylate (palmoxirate). N.m.r. experiments with a chiral shift reagent have been carried out on the (R)-epoxycarbinol **(6a)** and (racl.)-epoxycarbinol [prepared by m-chloroperbenzoic acid epoxidation of the allylic alcohol (2), 67%]. An epoxy hydrogen resonance from the racemic epoxycarbinol was split into two signals by the addition of europium(II1) tris-3-(heptafluoropropylhydroxymethylene)-camphorate; the corresponding epoxy hydrogen signal of (6a) exhibited only one signal under similar conditions. **A** sample of racemic (1) gave diastereoisomeric salts with $(-)$ -cinchonidine whose triplets for the C-6 protons could be resolved in the H n.m.r. The sample of (1a) showed only one triplet for the C-6 protons of its $(-)$ -cinchonidine salt.

Preliminary experiments have shown that only the **CoA** ester of acid (la) (i.e. R -enantiomer) inhibits CPT1 in rat liver mitochondria.²²

Since this work was carried out, a paper by Ho et $al²¹$ described the enantiospecific synthesis of methyl palmoxirate by a route that also employed the Sharpless epoxidation of an intermediate allylic alcohol.

References and notes

- 1. G.F. Tutwiler, R.J. Mohrbacher, and W. Ho, *Diabetes, 1979, 28, 242.*
- *2. J.* Verhagen, J. Leempoels, J. Burgmans, and G.F. Tutwiler, *Diabetes Suppi., 1984,* 33, 688.
- 3. *Drugs of the Future, 1986,* 11, 1034.
- 4. T.C. Kiorpes, D. Hoerr, W. Ho, L.E. Weaner, M.G. Inman, and G.F. Tutwiler, J. *Bid. Chem., 1984, 259, 9750.*
- 5. R.M. Hanson and K.B. Sharpless, J. Org. Chem., 1986, 51, 1922.
- 6. **European Patent Application 46S90.**
- 7. **E. Santaniello, F. Ponti, and** A. Manxocchi, *Synthesis, 1978, 891.*
- 8. V. **Ciurdaru and F. Hodosan,** *Rev. Rcum. Chim.,* 1977, **22, 1027.**
- 9. M.p. 47-48^oC; δ _H 1.26-1.59 (6H, m, 3 x CH₂), 1.72-1.81 (2H, m, CH₂), 2.36 (2H, t, J 7 Hz, **CH,C=), 3.88 (2H, t, J 6 Hz,** OCH2), 5.78 (lH, s, C=CHH), 6.26 (lH, s, C=CHH), 6.80 (2H, d, J 9 Hz, H-2 and H-6) and 7.24 (2H, d, J 9 Hz, H-3 and H-5); v_{max} 1 759 and 1 595 cm⁻¹; m/z 300 (M^+) and 128 (base peak, C_sH₄ClO) [Found: C, 60.1; H, 6.05. C_{1s}H₁₈Cl₂O₂ requires C, 60.04; H. 6.05%].
- **10.** Mp. 74.5-75.5OC [Found: C, 63.72; H, 6.77; Cl, 12.54. C, sH, ,ClO, requires C, 63.65; H, 6.72; Cl, 12.55%].
- 11. δ _H 1.18-1.49 (6H, m, 3 x CH₂), 1.76 (2H, m, CH₂), 1.95 (1H, br s, OH), 2.06 (2H, t, J 7 Hz, $CH_2C=$), 3.89 (2H, t, J 6.5 Hz, OCH₂), 4.05 (2H, s, CH₂OH), 4.86 (1H, s, C=CHH), 5.01 (1H, s, C=CHH), 6.79 (ZH, d, J 9 Hz, H-2 and H-6) and 7.20 (ZH, d, J 9 Hz, H-3 and H-5); m/z 269 (M^+) and 128 (base peak, C_eH_oClO).
- 12. *cf.* **M.J. Jorgenson,** *Tetrahedron Letts., 1962, 559.*
- 13. M.p. 44-45^oC; δ _H 1.26-1.58 (7H, m, 3 x CH₂ and OH), 1.71-1.81 (4H, m, 2 x CH₂), 2.66 **(lH, d, J 5 Hz, CHHO), 2.88 (lH, d, J 5 Hz, CHHO), 3.62 (lH, d, / 12 Hz, CHHOH), 3.77 (lH, d, J 12 Hz, CHHOH), 3.92 (2H, t, I 6.5 Hz, OCH,), 6.80 (2H, d, J 8 Hz, H-2 and H-6) and** 7.21 (2H, d, J 8 Hz, H-3 and H-5); m/z 284 (M⁺) and 128 (base peak, C_sH₄ClO,); [α]_D²⁴ -30.7^o (1% in CHCl₃) [Found: C, 63.46; H, 7.29. C₁₅H₂₁ClO₃ requires C, 63.41; H, 7.45%).
- 14. P.H.J. Carlsen, T. Katsuki, V.S. Martin, and K.B. Sharpless, J. Org. Chem., 1981, 46, 3936
- 15. A sample of (7) was independently synthesised for verification of its presence as a reaction product. It was found that addition of 18-crown-6 increases both the rate of reaction and the extent of oxidation at C-l. As there was competing oxidation between the primary alcoholic and epoxy methylene functions of (6), we envisaged that the epoxy aldehyde (10) would be oxidised at C-l at a faster rate, resulting in an increased proportion of (1) to (7). A sample of (+)-(10), $(|\alpha|_{\mathbf{D}}^2$ + 21.9⁰ (1% in CHCl,)), was prepared by Swem oxidation (A.J. Mancuso, S.L. Huang, and D. Swern, J. Org. Chem., 1978, 43, 2480) of enantiomerically pure $(-)$ - $(6a)$. Ru(III)-catalysed oxidation of $(+)$ - (10) gave a higher ratio of (1) to (7) .
- 16. M.p. 32-33°C; δ _H 1.26-1.60 (6H, m, 3 x CH₂), 1.64-1.8 (2H, m, CH₂), 2.14 (2H, m, CH₂) 2.79 (lH, d, J 5.8 Hz, CHHO), 3.03 (lH, d, *J* 5.8 Hz, CHHO), 3.76 (3H, s, OCH,), 3.90 (2H, t, 1 6.4 Hz, *OCH,),* 6.80 (ZH, d, J 9 Hz, H-2 and H-6) and 7.21 (2H, d, J 9 Hz, H-3 and H-5); m/z 312 (M⁺) and 128 (base peak, C_eH₄ClO); $[\alpha]_D$ + 7.06⁰ (0.6% in MeOH) [Found: C, 61.15; H, 6.42. $C_{16}H_{21}ClO_4$ requires C, 61.44; H, 6.72%].
- 17. Oil; δ_H 1.2-2.2 (13H, m, 5 x CH₂ and CH₃), 2.90 (2H, q, CH₂O), 3.90 (2H, t, OCH₂CH₂), 4.22 (2H, m, CO₂CH₂CH₃), 6.80 (2H, d, H-2 and H-6) and 7.24 (2H, d, H-3 and H-5); $[\alpha]_D^2$ ⁴ **+ 8.560 (1% in CHCI,).**
- **18. M.p. 53-61OC; dH 1.2-2.3 (lOH, m, 5 x CH,), 2.98 (2H, q,** CH,O), 3.91 (2H, t, OCH,CH,), 6.88 (2H, d, H-2 and H-6) and 7.22 (2H, d, H-3 and H-5); $[\alpha]_D^2$ ⁴ + 11.0⁰ (1% in CHCl₃).
- 19. M.p. 31-32^oC; $[\alpha]_D$ -6.07^o (0.6% in MeOH) for (8b).
- **20. A. Pfenniger, Synthesis, 1986, 89.**
- **21. W. Ho, 0.** Tarhan, **T.C.** Kiorpes, G.F. Tutwiler, and R.J. Mohrbacher, J. Med. Chem., 1987, 38, 1094.
- **22.** H.S.A. Sherratt and H.P.O. Wolf, unpublished resuhs.

 (10) R² = CHO

SCHEME 1

- iii. NaBH₄-silica (10 mol. eq. of hydride), Et₂O, r.t., 18h, 60%
- iv.
- LIAIH₄/AICI₃, Et₂O, -78^oC→ 0^oC, 70-92%
Diethyl L-(+)-tartrate (0.77 mol eq.), Ti(OⁱPr)₄ (0.51 mol eq.), t-BuO₂H (1.5 mol. eq.), v.
-
- powdered 4A sieves, -200C (3h + r.t. (1h)), 49%
RuCl₃ (2.2 mol. %), NaIO₄ (3 mol. eq.), CCl₄-CH₃CN-H₂O, r.t., 7h, 81% or RuCl₃ (5-10
mol %), NaIO₄ (3 mol. eq.), 18-crown-6 (5-20 mol %), CCl₄-CH₃CN-H₂O, vi. 66%
- vii.

 \overline{a}

- CH₂N₂ in Et₂O, 71%
DMF, NaHCO₃, (EtO)₂SO₂, r.t., 100%
NaOH in THF, r.t., 71% viii.
- ix.

NB in all the above $R^{\dagger} = C1$ $O(CH_2)$ ₈

(Received in UK 30 December 1988)